
 Towards platform independence:
retargeting GUI libraries on .NET

Judith Bishop and Basil Worrall

Department of Computer Science
University of Pretoria
Pretoria, South Africa

Jbishop@cs.up.ac.za, basil.worrall@dariel.co.za

ABSTRACT
Platform independence is an illusive goal when a system includes libraries which have hardware or low-level
software dependencies. To move such code to a different platform, the developer is faced with rewriting several
sections to interface directly with a different library or toolkit. We propose an approach where the code remains
the same, and the library is replaced ab initio by a machine-independent engine which is retooled into a front
end and a back end, of which only part of the backend needs to change for each platform. Our starting point is
the .NET framework’s SSCLI platform, Rotor, and the Views GUI engine, which initally ran only on Windows.
Views is an XML-based windowing system which provides the functionality of the System.Windows.Forms
library, missing from Rotor. ViewsQt is a conversion of the original Views project to support a retargetable
back-end. Experiments have shown that the ViewsQt code is portable, with only a few changes to the C++
classes required to compile and execute the code on the Linux and Mac OS X operating systems. On the
Windows platform, ViewsQt works well with both the .NET Framework and Rotor. This paper describes the
methodology we developed for porting libraries in general, discusses the case study of ViewsQt, and indicates
where such work would be applicable for other technologies. Comparison is made with multi-platform toolkits
such as Gtk+, and .NET’s new XAML notation.

Keywords
Platform independence, GUI toolkit, .NET, Qt, Rotor, retargeting methodology, Linux port, Views, XAML

1. INTRODUCTION
The innovative move of Microsoft to undergo a
standards process for their .NET framework and C#
language raised hopes of platform interoperability
being added to the language interoperability already
supported by .NET [9]. Apart from portability,
Microsoft’s implementation of the CLI (Rotor) was
intended as a basis for experiment and Microsoft
itself used it in order to test out its ideas on generics,
which are available in the Gyro add-on, and are now
planned for the next release of Windows, codenamed
Longhorn [10].
The CLI (Common Language Infrastructure)
included the definition of the C# language and many

of its key libraries, such as System and
System.Collections. However, not all .NET libraries
are included in the standard, with a notable omission
being System.Windows.Forms, which provides GUI
capability. This means that developers cannot
express GUI functionality in their programs (since it
will not compile) and there is no way, in the
standard, to hook into the operating system to render
and handle GUIs even if they could. GUIs are a
primary need of many programs, but the issue of
portability extends to third-party libraries as well:
how would they piggy-back on Rotor?
Standing back, one can see that the problem is one of
having invested in developing a program based on a
particular library, and then finding that the program
cannot migrate to a new platform, because of the
library’s reliance on hardware or low-level software.
If the library is a large and critical one, such as a
GUI, then any alternative to a complete re-
implementation would be desirable.
Although this paper will concentrate on GUI
libraries, other emerging hardware-oriented
technologies have the same problem of portability.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

Among these are tangible user interfaces (TUIs) and
mobile applications. TUIs integrate digital
information with everyday physical objects such as
electronic tags and barcodes. Papier-Mâché [11] is an
open-source toolkit for building TUIs with a high-
level event model to facilitate portability. CrossFire
[12] is a third-party product built on top of .NET.
Crossfire uses a booster to the CLR to enable code in
VB to run on the compact frameworks used by a
variety of mobile devices, such as cell phones and
palmtops. In this way, Crossfire also enhances
portability.
Multi-platform GUI toolkits have long been popular
for enhancing the capabilities of languages and
packages lacking built-in GUI facilities. Recent
examples are RAPID for Ada [6], FranTk for Haskell
[9] and SMLTk for ML [10]. Because these
languages have no UI capability of their own, they
adopt the interface of the toolkit, and the programmer
inserts code to interact with the toolkit directly.
In the .NET world, there have been similar projects
to port GUI toolkits onto the CLI. Gtk# is a
translation by the Mono project of the Gtk+ toolkit
into C# [1]1. The programmer familiar with Gtk will
feel comfortable calling the well-known methods, but
a .NET programmer with a Windows program to port
could be at a loss. For example, creating a label,
textbox and button in Gtk# is done with:
Label label = new Label("Password");
Entry entry = new Entry();
Button button = new Button("Submit");

which is quite different to the Windows equivalent
of:
Label label = new Label();
label.Text = “Password”;
Textbox entry = new Textbox();
Button button = new Button();
button.Text = “Submit”;

In other words, Gtk# is not a means for porting
existing Windows programs via the CLI to the Linux
platform. Qt# is a similar project intended to provide
a binding of Qt to C#, and is still under development.
And of course there is PIGUI which is based on Tcl’s
TK and is distributed with Rotor.
This paper addresses the issue of retargeting a library
across languages and platforms, without rewriting it
or creating a new wrapper for its programming
interface. Our contribution is in providing a
methodology that can be followed for other libraries,
as well as in identifying potential stumbling blocks
on the .NET framework, and proposing solutions.

1 Throughout this paper, projects and products whose

primary source of information is a website are listed at
the end of the paper, but not referenced in the text.

The methodology is explained via a case study of the
life cycle of our platform-independent GUI engine
Views. We show how we were able to take a library
dependent on Windows and. via a combination of
Rotor, Views, our retargeting methodology and the
Qt toolkit, to achieve the same GUI functionality on
other platforms, including Mac OS X and Linux.
The rest of the paper is structured as follows. In
section 2 we introduce the retargeting methodology.
Section 3 briefly describes Views, which is the basis
for the case study. Sections 4 and 5 look at the
retargeting process in detail. In Section 6 we evaluate
the outcome, and in Section 7 discuss related work.
Views is an ongoing project, so the conlusions in
Section 8 include mention of late-breaking projects
and future work.

2. RETARGETING METHODOLOGY
2.1 Overall plan
The retargeting methodology we developed is
explained in the stages shown in Figure 1.

P R’

L OS

S

E

P R

L OS

P R

TK OS’

S

Ef

Eb

(a) Normal operation of a library

(b) Introduction of GUI specification and engine

(b) Library replaced by OS-independent toolkit

Figure 1 Stages of the retargeting methodology
We start off with a program P using a library L
running on a given runtime R (virtual rachine) and

operating system OS which supports L’s low-level
activity. An example would be a program in C# (P)
using System.Windows.Forms (L) on the CLR (R)
on Windows (OS).
In the first step towards gaining independence of the
operating system, we introduce a GUI specification S
(in XML notation) to specify the function of the
library, in other words the programmer’s interface.
Instead of the label, textbox and button code:
Label label = new Label();
label.Text = “Password”;
Textbox entry = new Textbox();
Button button = new Button();
button.Text = “Submit”;

we would write the XML specification:
<Label text=’Password’/>
<Textbox name=entry/>
<Button name=button text=“Submit”/>

We then replaced the GUI creation and handling
functions of System.Windows.Forms by this XML
interface plus the Views engine E. Although this
phase could run on an alternative runtime R’, such as
Rotor, it still needs the rendering ability of the
Windows dll. Thus stage (b) can still only run on the
Windows OS. This work is discussed in [4]. A
welcome side effect of the XML notation is that the
existence of the library becomes program- (and
therefore language-) independent.
In the third stage, which is the subject of this paper,
we take the engine and split it into a front and back
end, Ef and Eb. The interface between the two parts
is chosen so that it can operate with an existing
cross-platform toolkit TK. The system can now run
on any platform OS’ on which the toolkit runs. In our
case, we inserted Trolltech’s Qt (TK), which runs on
the same operating systems that Rotor does, but also
on Linux (OS’). Thus the retargeting is complete.

2.2 General retargeting steps
The methodlogy can be applied in other spheres. The
three steps to be followed in the process of achieving
stage (c) platform independence are:
1. Understand the design and implementation of

the original system. In our context, the original
system is the version of Views that relies on the
Windows dll. In this step our objective is to
model the contractual agreement between the
existing components of the Views system, and in
so doing provide a point of reference for
implementing this interaction in the retargeted
version. For example, when the system is given
the instruction to render a button, positioned
relative to a textbox, we not only have to ensure
that a button and a textbox are rendered, but also
that their relative positioning remains intact.

2. Extract the common components from the
original system, and put them into an interface.
The model of contractual interaction developed
in the first step needs some (similarly) abstract
representation in the code. An interface is ideal
for this purpose, as it allows any appropriate
implementation to take its place in the run-time
environment, yet provides enough structure and
usage information to limit the breaking of the
contract between the user of the interface and its
implementer. Typical common components in
GUI systems would be the XML parser and the
window and control manipulation mechanisms.

3. Write a toolkit-specific implementation of the C#
interface which pulls in the services of the
extracted common components. Here we take the
toolkit and translate (or aggregate) its
functionality to the expectations of the model
and its interface. It is here that we make sure that
when the user wants a button, they get a button,
so to speak.

We now make this methodology concrete by
considering our case study, the retargeting of
System.Windows. Forms to Linux.

3. THE CASE STUDY - VIEWS
3.1 The objective
The intent of the Views project is to provide a GUI
system for the Rotor platform that would share
Rotor’s platform independence, and enhance it by
offering programmers the much-needed support to
provide GUIs with their Rotor applications [3]. We
were not in the business of duplicating large effort,
so the intention was always that Views would rely on
an existing underlying GUI renderer to actually
display the GUI. When running on Windows, or on
Rotor on a Windows platform, Views makes use of
the System.Windows.Forms dll to perform this
function.
From the outset of the Views project, it was
envisaged that this reliance on one platform would be
removed by refactoring the Views code so that an
independent toolkit (e.g. Tcl/TK or Qt) could be
plugged into the system, allowing it to run on the
platforms these toolkits support (which, in most
cases, are also the platforms that Rotor supports). In
terms of the user's code, the interface would remain
the same (including the XML notation).

3.2 Overview of Views
Views allows the user to specify a GUI in a simple
and easy-to-learn XML notation, and then to
integrate the application with this GUI through an
elementary interface to the core engine. No code
generation takes place, and the GUI specification can

be stored in an external file so that it will not
obfuscate the application's logic. A side effect of
keeping the GUI specification and application logic
separate is that the programmer can make simple
changes to the controls in the specification (e.g. their
layout, or even substituting a drop-down list for a
collection of radio buttons) without having to
recompile the program. From the opposite
perspective, the GUI can be reused by a number of
applications that require a similar front-end while
presenting different results (e.g. a calculator program
that prints out expressions in either standard
algebraic or reverse Polish notation). More
information about the use and implementation of the
Views project can be found in [2,3,4].
The Views interface consists of two parts, namely

• the Views notation for specifying a GUI in
XML, and notation, and

• the Views engine which provides an
interface to the programmer.

We now take a brief look at each of these, to give an
idea of the scope of work involved in transforming
the interfaces to abstractions of an arbitrary
windowing toolkit.

3.3 The Views notation
A typical GUI specification in Views consists of two
types of tags – grouping and control. A third type,
position tags, can also be used for finer layout
control. Grouping tags may contain nested groupings
and controls, and dictate a specific layout of these
sub-groups or controls.

static string specEn =
 @"<form Text='Currency calculator'>
 <horizontal>
 <vertical>
 <Label text='Paid on hols'/>
 <Label text='Charged'/>
 <Label text='Exchange rate is'/>
 <Button name=equals text='='/>
 </vertical>
 <vertical>
 <Textbox name=eurobox/>
 <Textbox name=GBPbox/>
 <Textbox name=ratebox/>
 <Button name=clear text='Reset'/>
 </vertical>
 </horizontal>
</form>";

Figure 2 A Views specification

For example, the <horizontal> group specifies
that all groups and controls contained within it be
placed side by side from left to right. Each tag has
some valid attributes, among which are numeric
values, strings, colors, alignment values and size

measures. Figure 2 shows a typical Views
specification.
To create a GUI, the programmer passes the
specification to an instantiation of the Views Form
class, as in:
Views.Form f = new Views.Form(specEn);

Figure 3 shows the corresponding GUI as drawn by
the Windows renderer.

Figure 3 A GUI produced by Views

3.4 The Views programmer interface
Views presents a small, yet complete number of
functions the user can use to query and alter the
controls defined in the specification, and to react to
simple “clicked” or “moved” events.
There are three variations of Get methods, namely
GetControl, GetText and GetValue. The GetControl
method is the means through which the application is
informed of events occurring in the GUI. GetControl
blocks until an event occurs, upon which it returns
the name of the control where the event occurred.
The GetText method accepts the name of a control
that can display text (e.g. labels, buttons, textboxes),
and returns the text that control is currently
displaying as a string. GetValue is similar, and is
used for trackbars, checkboxes etc. Two of the three
types of Put methods, PutText and PutValue, are the
logical counterparts of the Get methods. Views also
provides a PutImage method. Part of the program
associated with the specification above is shown in
Figure 4.
A feature of Views is that is not “black box”: any of
the controls can be accessed by name, and their
attributes changed. For example, to change the text
of the equals button in the form f from “=” to
“equals”, and colour it yellow, we use:
Button b = f["equals"];
b.Text = "Compute";
b.BackColor = Color.Yellow;

Using the C# implicit operator facility for
overloading parenthesees, implicit conversions are
defined for all controls that may be used inside a

Views form, so that casting to the data type of the
extracted control is unnecessary.

 for (string c = f .GetControl();
 c!=null; c = f .GetControl()) {
 switch (c) {
 case "reset":
 euro=1; GBP=1;
 f.PutText("eurobox",
 euro.ToString("f"));
 f.PutText("GBPbox",
 GBP.ToString("f"));
 break;
 case "equals":
 euro=double.Parse(
 f.GetText("eurobox"));
 GBP=double.Parse(
 f.GetText("GBPbox"));
 f.PutText("ratebox",
 (euro/GBP).ToString("f"));
 break;
 default: break;
 }
}

Figure 4 Event handling in Views

3.5 Why Views?
If the goal is to retarget existing programs based on
Windows, why is a new library such as Views a good
idea? Firstly, the XML front-end achieves language
portability, and its notation is quicker and easier to
write and modify than the equivalent method calls
and property accesses of a traditional GUI library.
An alternative to coding GUIs by hand is to use a
GUI builder to lay out the window, and have it
generate the embedded program code, as Visual
Studio does. However, large amounts of generated
and embedded code are considered to be both
confusing and error-prone.
An alternative is to have the GUI builder generate the
XML, and we have such a system for Views in
prototype. XAML takes this approach too, as does
RAPID [5]. A comparison of Views with other XML
based systems is undertaken in section 7.
Although Views was primarily aimed at beginning
programmers [3], its methods and appeal extend
wider, as does its use as a case study for retargeting.

4. FRONT-END FACTORIZATION
In the original, Windows-specific, implementation of
Views, the process of converting a GUI specification
to a visible window proceeded along the lines shown
in Figure 5. The original design of Views
incorporated many modular elements, the majority of
which are toolkit independent. These modules
represent important aspects of the system's

behaviour, and should therefore be carried across to a
portable version.
However, there are elements of the programmer
interface to the engine that are very tightly coupled to
the Windows Forms library, and cannot be migrated
without change. For example, steps 1-3 in the
diagram that involve processing the XML and
building a tree, are platform-independent. However,
laying out and displaying the GUI will depend on the
renderer and, while GetControl is free of any
reference to the Windows Forms Library classes, it is
indirectly dependent on synchonizing with their
event-triggering.

 Application

Constructor

Normalize

Parse XML

Construct
groups

Form thread

Construct
controls

Layout
controls

1

2

3

4

5

Figure 5 Control flow in Views

When considering cross-platform realization of
Views, we can see that there are components that
straddle the imaginary line between the front-end and
the back-end. For example, the methods defined in
the programmer interface are accessible to the
application, yet are dependent on the toolkit. In order
to successfully implement a toolkit-independent
version of Views, we need to divide these grey-area
components in such a way that the overall separation
between the front- and back-end is solid. This will
allow the back-end to be interchangeable, effectively
enabling us to run Views on top of any toolkit.
The way we chose to implement this separation was
to create a C# interface, called IForm, which declares
all the Views API methods accessible to the
application, as in Figure 6.
In the Windows.Forms implementation of Views, the
XML-tree traversal builds the window by
instantiating the controls, placing them and hooking
up the event handlers.

namespace Views {
 public interface IForm {
 void HideForm();
 void StartApplication();
 String GetControl();
 String GetText(String name);
 String GetText(String name,
 int index);
 void PutText(String name,
 String text);
 void PutText(String name,
 int index, String text);
 void PutImage(String name,
 String filename);
 int GetValue(String name);
 void PutValue(String name,
 int value);
 }
}

Figure 6 The IForm interface

In the toolkit independent version, we do not rely on
the back-end to parse or traverse the XML, so there
is a requirement to construct a tree comprising
toolkit-agnostic nodes which the back-end can
traverse and interpret. The nodes are instances of a
new class, Ctrl, which encapsulates information
regarding the name, value, attributes and children of
a tag in the XML specification. The tree of Ctrl
nodes is built by another new class, Parser, which
reproduces all the XML-processing code from the
original Views.Form class.
Iform replaces Form as the class used to construct a
GUI window, as in:
Views.Iform f =

new QtForm.QtForm(specEn);

An implementation of the IForm interface can use the
Ctrl tree to construct control instances specific to the
toolkit, without having to be aware of the original
XML tree. Thus we have successfully separated the
front-end and back-end of Views. The XML has
been cleared of all references to toolkit classes, and
the programmer interface has been placed behind a
clean interface that deals only in names and integer
values. A reusable abstraction of the controls and
their attributes was created to purge the back-end
code of any references to the XML structure.

5. BACK-END IMPLEMENTATION
For our test implementation of the retargetable Views
framework, we chose Trolltech's Qt toolkit. Qt is a
complete application development library for C++,
including APIs for GUI rendering, XML parsing,
database connectivity and much more. Full details of
our implementation are given in [17]. Some of the

issues that relate specifically to .NET with Qt are
mentioned here.

5.1 Language interoperability
Since Qt is written for, and in, C++, an
interoperability layer (written in C#) that implements
the interface is required. Thus we have a C# class,
QtForm, that implements IForm, but delegates most
of its functionality to a wrapper class, QtWrapper.
The latter consists of a set of simple wrapper
methods that correspond with the methods defined in
IForm, and a set of private, static methods that link
with externally defined C++ methods.
Two additional issues were solved at this point. First,
because C# and C++ have different mechanisms for
dealing with strings, it was necessary to write
marshalling methods that convert between the two.
The second aspect is the entry-point specification in
the DllImport attribute attached to the GetText
method. The C++ linker provides a specially encoded
string for every method declared to be externally
visible in the source code, called its entry-point. This
string can be used by other languages to discover the
method within the dll that is produced from the C++
source code. Unfortunately the entry-point is
compiler-specific, and also differs from OS to OS.
Thus, until a truly platform independent entry-point
specification mechanism is found, the QtWrapper
class will require adjustment for every
platform/compiler combination to which ViewsQt is
ported.
Returning briefly to the implementation of the IForm
interface, QtForm, we can now easily invoke the
methods of the C# QtWrapper class, blissfully
unaware of the underlying C++ implementation:
public String GetText(
 String name, int index) {
 return this.wrapper.GetText
 (name, index);
}

5.2 Garbage collection
When writing an interoperable program it is vital to
ensure that references to elements in one language
made in the other are kept valid for the lifetime of
that reference. When one of the languages is
managed (i.e. has built-in garbage collection), this
task adopts an extra degree of complexity – the
rearrangement of the heap will invalidate any
references that weren't present on the stack during
the collector's walk, which includes those held by the
other program. In this case, the referenced object is
still on the heap, indicating that a reference still
exists within the managed program. More serious is
the situation where the unmanaged program holds the
only references to an object on the managed heap.

The garbage collector will happily free the heap
space, once again invalidating the unmanaged
reference.
There are two areas of ViewsQt where careful
memory management is necessary to prevent errors.
The first is the passing of strings between C# and
C++, which happens in the QtWrapper and QtCtrl
twins. The second is the pointer to the C++ QtCtrl
instance held by the C# QtCtrl instance. In the
context of the string-passing, a string passed from C#
to C++ must not be garbage collected before the C++
code has had enough time to copy the contents to its
own heap. The QtCtrl issue is slightly trickier. In this
case, we wish to prevent garbage collection on the
C# side so that we can tidy up the C++ heap at the
end of the program.
In both cases, we stop the C# garbage collector from
collecting the objects by obtaining instances of the
System.Runtime.InteropServices.GCHandle class for
each object. In doing so, the garbage collector treats
the objects as if they had been pinned down in the
heap – they cannot be moved or removed. We
maintain a list of these GCHandle instances so that
we can free them at an appropriate point in the
execution. We don't mind the GCHandle instances
themselves being moved around, as long as the
objects they point to stay put.

5.3 Handling Events
There are two kinds of event handling which need to
occur in an implementation of Views. The first is an
internal mechanism that responds to the push-based
events received from the GUI controls. A user of
Views is shielded from this implementation by the
second kind of handler, a pull-based (or polling)
mechanism implemented in the GetControl method.
These two event handler types are complementary –
when the GUI triggers an event, the internal handler
looks up the name of the source control and forwards
it to the GetControl. The application can then handle
the event suitably. Figure 7 illustrates the two kinds
of event handling interacting with each other.
In (1) the user’s program calls GetControl, which
blocks indefinitely. In (2) the operating system’s
windowing system interprets a user’s gesture with
the mouse or keyboard as an event, and passes it onto
the event queue. The toolkit, having registered with
the queue to hear about such events, picks up the
information, encapsulates it in an Event object and
passes it onto views in (3). Views extracts the name
of the user-interface control (in this case button X)
from the event information and passes it, in (4), to
the user’s program as the return value of the
GetControl method.

In ViewsQt, we instrument push-based event
handling by providing “slot” methods that are
invoked when a control's “signal” is emitted. This is
not unlike C#'s event implementation, where a multi-
cast delegate (slot) is associated with a specific event
(signal) published by an object. (In both C# and Qt,
any object may fire events.) While it is possible to
create a separate method for each kind of signal that
each kind of control emits, we felt it a better
abstraction to filter the events in such a way that a
single eventHappened signal is emitted that contains
a reference to the name of the control that originally
emitted the event.

User’s
program

Views

Toolkit

OS windowing
system

1) GetControl

2) publish click event on button X

3) push event

4) GetControl returns “X”

X

Figure 7 Event handling

This brings us to the implementation of the pull-
based event handler. When a button is clicked, for
example, the clicked method defined in QtWrapper is
invoked. This method simply invokes a function
pointer, listener, that is defined in the QtWrapper
class. This function pointer references a method
signature assigned to it in the SetListener method.
The constructor for QtForm invokes the SetListener
method defined in the C# QtWrapper class, passing it
a variable called callback. This variable is in fact a
C# delegate that refers to the ClickHappened defined
in the QtForm class. The delegate is of type
Delegate, which is declared in the C# QtWrapper
class. The declaration of Delegate and the
instantiation of callback are shown below:
public delegate void Callback(
 [In] IntPtr name);
QtWrapper.Callback callback = new
 QtWrapper.Callback(ClickHappened);

The C# QtWrapper class imports the setListener
method from its C++ equivalent as follows:
static extern void setListener(
 [In] IntPtr ptr,

 [In, MarshalAs(
 UnmanagedType.FunctionPtr)]
 Callback l);

The MarshalAs annotation specifies that the
reference to the Callback passed to setListener
should be converted to a native function pointer. This
amazingly simple mechanism allows native C++
code to easily invoke methods defined in C#. A
proviso is that the method signature in C++ must
specify its method-pointer argument using an
equivalent descriptor.

5.4 Matching the libraries
In retargeting a library via a third party toolkit, it is
inevitable that not all features offered in the original
will be matched in the other. We were fortunate that
there was only one such disparity between Forms and
Qt, the DomainUpDown, which displays a single
string from a list of strings, with up/down buttons to
select other strings in the list. The closest equivalent
in Qt is the QSpinBox, which by default displays a
single integer in a range, with up/down buttons to
select the next/previous value. We found it was
possible to achieve a mapping by extending the class
and overriding some methods. The code the user
writes remains unchanged despite this underlying
change, which meets the requirement that retargeting
Views should not change the front-end syntax or
semantics.

5.5 The Linux port
Since Linux has such a huge following, expecially in
academia, it was a primary objective to get Views
onto this platform. Once Views had been retargeted
to Qt, thus eliminating the dependence on
Windows.Forms, it could be run on Rotor (and all its
platforms) as well as Mono (and its platforms). A
group of students undertook the port to Linux, which
involved writing the make files and resolving issues
of paths and error messages. It was interesting that
the port to Debian Linux did not work immediately
on other Linux versions, such as Gentoo and
Mandrake, and work is progressing on those.

6. EVALUATION
6.1 Example
Figure 8 (a) and (b) show a GUI with a variety of
controls as rendered by ViewsQt and Views, both
running on Windows. The program is taken from
Chapter 5 of [3]. The back-end abstraction can be
seen to work, at least in the Qt case. That is,
constructing an IForm instance that mediates
between the Views front-end and objects specific to
the back-end GUI toolkit is not difficult, and most of

the retargeting effort lies in implementing the
objects.
Furthermore, these objects are not especially
complex, but it is important to instrument all the
functionality expected by the front-end, and to
accommodate issues of interoperability between
languages.
As mentioned above, we tried as far as possible to
keep the code that a user of Views would write the
same across both implementations. This was not
possible in the case of the main application thread,
but in such cases a balance must be struck between
that which we would rather not to do and that which
we cannot do. Adding a single line of thread-related
code to the application forms this balance.

6.2 Other platforms and languages
Using Rotor as the base CLI, ViewsQt was
successfully run on BSD UNIX and MacOS X. It is
also worth reiterating that because of the language
interoperability of .NET, ViewsQt, although written
C# and C++, is available to programmers writing
applications in other .NET languages. Specifically, it
has been tested with programs written in C++ and
Visual Basic. So far, the programs run correctly, and
no changes to Views have been required.

6.3 Choice of toolkit
A key component of our methodology is the straight
use of an existing multi-platform toolkit, rather than
any writing or re-tooling. Three commercially
available toolkits are Tcl/Tk, Gtk+ and Qt. In the
planning phase of the retargeting project, Tcl/TK was
considered as a viable option for the implementation.
However, we chose to use Qt as Tcl/TK involved not
only a significant performance trade-off (Tcl is
always interpreted), but also a steeper learning curve
in order to become conversant with Tcl's syntax and
semantics. Qt, being entirely based on C++ and
presenting a very natural programming interface, was
the better choice for our purposes. However, one
disadvantage to using Qt is that a development
license must be purchased for the Windows version
(Qt/Windows) in situations not covered by an
academic licence or where the 30-day trial period is
insufficient.
An important factor in choosing a toolkit is that it
must be as multi-platform as possible. In this respect,
Gtk+ would also have been a possibility. However,
the toolkit is completely hidden from the developer,
therefore there is nothing to be gained in repeating
the exercise with a second toolkit.

Figure 8 A program in ViewsQT and Views

7. RELATED WORK
In looking at related work, we concentrate on how
our methodology relates to other similar attempts to
provide cross-platform libraries. Predictably, the
major effort in this regard has centred on GUI
interfaces and toolkits, thus this section focuses on
efforts in this area..

7.1 Declarative UI models
A key component of the retargeting strategy is the
introduction of XML for the specification of the
GUI. Two examples of the genre of declarative user
interface models are IUP/LED [12] and CIRL/PIWI
[7]. In both cases, a declarative language (LED and
CIRL) was provided to describe the user interface in
terms of its controls and layout. On the API front,
they contain functions for hooking events signaled
by the interface to call-back methods defined in the
user’s application, and functions to query and alter
attributes of the controls displayed. The call-back
event model is used so that the usual native
windowing toolkit’s events are filtered down to those
relevant to the application.
Both CIRL/PIWI and IUP/LED were designed from
the start to abstract the GUI description from the
underlying platform’s toolkit, and to provide a
similar look-and-feel across the various platforms.
The creators of both projects, however, lament the
absence of an existing toolkit that provided a

common look-and-feel across various platforms
(both projects were born in the pre-Java and before
any widely-accepted platform-independent toolkits,
such as Qt and Tcl/TK, were available). Our work on
the ViewsQt project was not hindered by these
concerns because of the high-quality, platform
independent toolkits available to us today.

7.2 XAML and XUL
Views belongs to the concrete representation model
subdivision of the declarative user interface models,
which describes user interfaces in terms of the
controls displayed to the user, their composition and
their layout. Such declarative user-interface models
are not new [8,14], and XML is broadly being
adopted as the favourite notation for these languages.
Two modern, XML-based models are XUL and
XAML.
XUL is the model used by the Mozilla family of
browsers. A feature of XUL is the ability to create
additional custom widgets using a related language
called the Extensible Bindings Language (XBL).
XUL is certainly cross platform, but its primary
disadvantage is that it is tied to JavaScript for the
event handlers.
XAML is the model Microsoft is making available
with Version 2 of the .NET Framework, and is also
the foundation for the Avalon windowing system
component of the Longhorn version of Windows.

XAML is very similar to Views in that rides on the
language interoperability of .NET. Unlike Views,
there are no push-based event methods, and all
handlers are also indicated as method names in the
XML. Of course, Microsoft does not intend that
anyone would actually write XAML: it is more the
output notation from the GUI-builder of Visual
Studio. There is nothing intrinsically cross-platform
in XAML, since it still relies on
System.Windows.Forms for events and rendering.
Thus XUL and XAML are variations of the stages
represented by Figure 1(a) and (b). The big
difference between them and Views is that both XUL
and XAML allow (but do not compel) the
programmer to embed event-handling code
(JavaScript, and any .NET language, respectively)
within the user interface declaration. The Views
model, on the other hand, provides an engine that
intercedes on behalf of the GUI to signal events to
the host application. While the functionality offered
by XUL and XAML is attractive, we contend that the
separation of concerns evinced by Views’ engine-
based approach is cleaner and offers greater
maintainability and ease-of-use to the programmer
and designer.

7.3 Other multiplatform toolkits
We have already mention in Section 1 the efforts to
extend platform independence beyond GUIs [11, 6]
and the ports to Mono of Gtk# and Qt#. It will be
interesting to see if the idiom of these toolkits
becomes so entrenched with the .NET Linux
community, that XAML will not in the end gain wide
acceptance.

8. CONCLUSION AND FUTURE WORK
ViewsQt is a conversion of an XML-based GUI
library to support a retargetable back-end. The
project involved extracting the common front-end
elements of XML checking, parsing, and abstract
control creation from the original Views engine, and
replacing references to the Windows Forms library
classes with calls to a C# interface. This interface
hides the toolkit-specific back-end components
behind a small (and easy to learn) set of methods.
Finally, we created an implementation of this
interface for the Qt windowing toolkit, and provided
a set of classes to delegate calls from the C# objects
to their counterpart C++ objects.
Experiments have shown that the ViewsQt code is
portable, with only a few changes to the C++ classes
(related to interface inclusion and entry-point
specification) required to compile and execute the
code on the Linux and Mac OS X operating systems.

On the Windows platform, ViewsQt works well with
both the .NET Framework and Rotor.
Future work on ViewsQt will entail smoothing out a
few wrinkles with regards to the colour and font
properties of the controls, and perhaps adding
support for more controls that the Views
specification does not cater for (e.g. menus, status-
and tool-bars). Possibly, an implementation using a
second toolkit such as GTK+ will be undertaken to
prove the actual retargetability of the front-end.
It is also our intention to exercise the methodology
here on libraries other than simple GUIs. Examples
would be speech synthesis, or the tangible user
interfaces, which are attracting attention.
At the time of writing, an exciting development is the
complete rewriting of Views in .NET 2, based
entirely on reflection. The prototype system is
operational, and is about one-sixth the length of the
original because actual controls are picked up
directly by name from the XML specification, rather
than going through a program transformation. We
will be investigating whether the same leverage can
be obtained for Qt, and hence for any third part
toolkit.

ACKNOWLEDGEMENTS
This work was supported by Microsoft Research and
THRIP Grant no. 2788. We would like to thank
David-John Miller for his enthusiastic assistance
with the project, and acknowledge the inspiration of
Nigel Horspool of the University of Victoria, who
wrote Views. Johannes Eickhold, Mathhias Kempka
and Mihael Vrbanec of TU Karlsruhe were
responsible for the port of ViewsQt to Linux.

REFERENCES
[1] Niel M Bernstein, Using the Gtk toolkit with

Mono, O’Reilly ONDotNet, online article
2004/08/9/ August 2004.

[2] Judith Bishop and Nigel Horspool. C#
Concisely. Addison Wesley, 2004.

[3] Judith Bishop and Nigel Horspool. Developing
principles of GUI programming using Views.
Proc. ACM-SIGCSE, 373-377, March 2004.

[4] Judith Bishop, R. Nigel Horspool, and Basil
Worrall. Experience with integrating Java with
C# and .NET. Concurrency and Computation:
Practice and Experience. To appear, June 2005.

[5] Martin C. Carlisle and P. Maes. RAPID: A Free,
Portable GUI Designer for Ada, SIGAda '98,
158-164, ACM, 1998.

[6] Martin C Carlisle, A truly implementation
independent GUI development tool, Proc.
SIGAda ‘99, 47 - 52 , ACM, 1999

[7] D.D. Cowan et al. CIRL/PIWI: A GUI toolkit
supporting retargetability. Software—Practice
and Experience, 23(5):511–527, 1993.

[8] Paulo Pinheiro da Silva. User interface
declarative models and development
environments: a survey. Proc. DSV-IS2000,
LNCS 1946, 207–226, Springer-Verlag 2000.

[9] ECMA Standard 335: Common language
infrastructure (CLI), December 2002.

[10] Andrew Kennedy and Don Syme. Design and
implementation of generics for the .NET
common language runtime, Proc. ACM
SIGPLAN PLDI, 1-12, June 2001.

[11] Scott R. Klemmer et al, Papier-Mâché: toolkit
support for tangible input. CHI 2004: Proc.
ACM Conf. on Human Factors in Computing
Systems, CHI Letters, 6, 399–406, 2004.

[12] Wei-Meng Lee, Writing Cross-Platform Mobile
Applications Using Crossfire, O’Reilly
ONDotNet, online article 2004/07/12, 2004

[13] C.H. Levy et al. IUP/LED: A portable user
interface development Tool. Software—Practice
and Experience, 26 (7):737–762, 1996.

[14] C. Lüth, B. Wolff, TAS — A generic window
inference system, 13th Conf on Theorem
proving and higher order logics, in LNCS 1869,
405-422, Springer-Verlag 2000.

[15] Egbert Schlungbaum. Individual User Interfaces
and Model-Based User Interface Software Tools.

Proc. ACM Intelligent User Interfaces IUI’97,
229–232, Orlando, Florida, USA, January, 1997

[16] Meurig Sage, FranTk – a declarative GUI
language for Haskell, Proc. 5th ACM SIGPLAN
conf. on Functional Programming, 106–117,
2000.

[17] Basil Worrall, Building a retargetable XML GUI
toolkit, Polelo technical report #6–2004.

WEB REFERENCES (checked 14/2/2005)
Avalon msdn.microsoft.com/longhorn/

understanding/pillars/avalon/
CLI www.ecma-international.org
Debian www.debian.org
Gtk# gtk-sharp.sourceforge.net
Gtk+ www.gtk.org
Gyro research.microsoft.com/projects/clrgen/
Longhorn longhorn.msdn.microsoft.com
Mono www.go-mono.com
Qt www.trolltech.com
Qt# qtcsharp.sourgeforge.net
Tcl/Tk www.tcl.tk
Rotor msdn.microsoft.com/net/sscli/
Views views.cs.up.ac.za
ViewsQt sourceforge.net/projects/viewsqt/
XAML link from Avalon page
XUL www.mozilla.org/projects/xul

